
BACKTALK

March 2006 www.stsc.hill.af.mil 31

I’d like to start off this column with a story about a friend of
mine. We’ll call my friend “Jeff.” The story involves his daugh-

ter, who we will call “Jill.” It seems that Jill, who is an accom-
plished swimmer, once had a contest with a friend of hers to see
who could hold her breath the longest. Jill easily won the contest
– a fact that had to be verified by her friend – as Jill had the
endurance and willpower to hold her breath so long that she
passed out. I also hear that ambulances were involved afterwards.

You know, as a father, I would be proud to have a daughter
like Jill1. I know Jeff is! I imagine anybody with that kind of
willpower is rather immune to peer pressure, and will also ulti-
mately succeed in whatever she sets her mind to. She definitely is
tenacious – which is a synonym for stubborn. Obviously, she has
the makings of a fine engineer.

I have long thought that those children who have the poten-
tial to be truly gifted engineers could be identified easily in
playschool. All it requires is a sandbox and a few toys. Insert chil-
dren. There will be a few children who will happily play with oth-
ers, enjoying the sand and the toys. These are not future engi-
neers. Over in the corner of the sandbox, however, there will be
a child happily playing alone, by himself or herself. Whenever any
of the other children come too close, this child will throw sand
at the intruders, and may go as far as knocking intruders on the
heads with the sand-building instruments, all the while clutching
at his/her toys shouting, “Mine!” This is a potential engineer!

Let’s face it – for developers, a good chunk of our day is
spent sitting alone in cubicles, ignoring the hustle and bustle sur-
rounding us. We occasionally put on earphones and listen to
music, or just learn to tune out surrounding noise. And there we
sit – oblivious to the outside world, creating “stuff.” The prob-
lem, as any good software tester will tell you, is that putting your
stuff together with my stuff will uncover interface errors. And
again, as any good tester will tell you, interface errors are numer-
ous and often difficult to fix. From my point of view, the prob-
lem is your code. You, of course, might have a slightly differing
opinion. Many testing authorities say that up to 75 percent of all
errors stem from interface problems.

It’s not all our fault; we’re trained to operate in isolation, start-
ing in college. We are encouraged to come up with individual,
innovative solutions to problems. The problem is that your indi-
vidual, innovative solution might not make a lot of sense to me,
and I have to write the software that interacts with yours. To
make my software interact with your software, we need to com-
municate before and during the software creation. This can be
done via the tried-and-untrue method of meeting after meeting
after meeting – but this method hardly ever works. What I need
is a way to encourage good teamwork and cooperation, without
spending 50 percent to 70 percent of my day in meetings. Enter
Personal Software ProcessSM (PSPSM) and Team Software
ProcessSM (TSPSM).

Granted, I am a PSP/TSP zealot. PSP encourages good indi-
vidual programming practices, and TSP creates an environment
that permits motivated individuals to work as an efficient team. I
have been teaching PSP/TSP since 1998 – and it’s one of the few
tools that I teach to developers that (almost) always prove bene-
ficial. Why almost? Because some developers just don’t want to
interact as a team. They don’t have the interpersonal skills to play

well in the sandbox. Part of this is because of insecurity
(“Everybody else is so much better than me – and I don’t want
anybody knowing this.”). Part is because they never learned good
team-building skills. (Note that spending a full day at an off-site
team-building exercise where you learn to fall backwards into
your teammates arms is not really that useful). However, I have
found that the majority of developers I have worked with do
have the skills and motivation to become part of an integrated
team.

PSP/TSP works because teams are inherently more effective
than individuals. The so-called synergistic effect really works –
where the combined action of two individuals is more than the
sum of their individual efforts. Developing software through
teamwork is nothing new, but what makes PSP/TSP effective is
that it includes quantifiable metrics that allow developers, as a
group, to accurately plan and track their progress. These team
metrics make the team effective, because, as Lord Kelvin said
back on May 3, 1883, in a lecture to the Institution of Civil
Engineers:

When you can measure what you are speaking about
and express it in numbers, you know something about
it; but when you cannot measure, when you cannot
express it in numbers, your knowledge is of a meager
and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your thoughts,
advanced to the stage of a science. [1]

My personal translation of this – which I have repeated to
every PSP class I have taught – is, “If you can’t count it, you can’t
account for it.” But Lord Kelvin only mentions the need for
metrics, not teamwork. If only I could find a reputable source to
support teamwork:

Two are better than one, because they have a good
return for their work: If one falls down, his friend can
help him up. But pity the man who falls and has no
one to help him up! ... Though one may be overpow-
ered, two can defend themselves. [2]

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

<dcook@aegistg.com>

References
1. Kelvin, Lord <http://www.cromwell-intl.com/3d/index.hml>.
2. The Bible. Ecclesiastes 4: 9-10, 12 (NIV)2.

Notes
1. In case any of my daughters read this column – yes, you are

“tenacious,” also. And I am proud of you.
2. The biblical scholars among you might note that I skipped

verse 11: “Also, if two lie down together, they will keep warm.
But how can one keep warm alone?” This is not the kind of
teamwork that I either encourage or condone among my co-
workers!

Why Isn’t There an “I” in Team?


